

1200V, 18A, 0.58 Ω Max, $t_{rr} \le$ 330ns

N-Channel FREDFET

POWER MOS 8® is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent niose immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full full bridge
- · Half bridge
- PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I _D	Continuous Drain Current @ T _C = 25°C	18	
	Continuous Drain Current @ T _C = 100°C	12	Α
I _{DM}	Pulsed Drain Current ^①	104	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy®	2165	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	14	Α

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			545	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.23	0.23 °C/W	
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Wavefomr from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Dockogo Waight		1.03		OZ	
	Package Weight		29.2		g	
Torque	Terminals and Mounting Screws.			10	in∙lbf	
				1.1	N⋅m	

Static Characteristics

T_J = 25°C unless otherwise specified

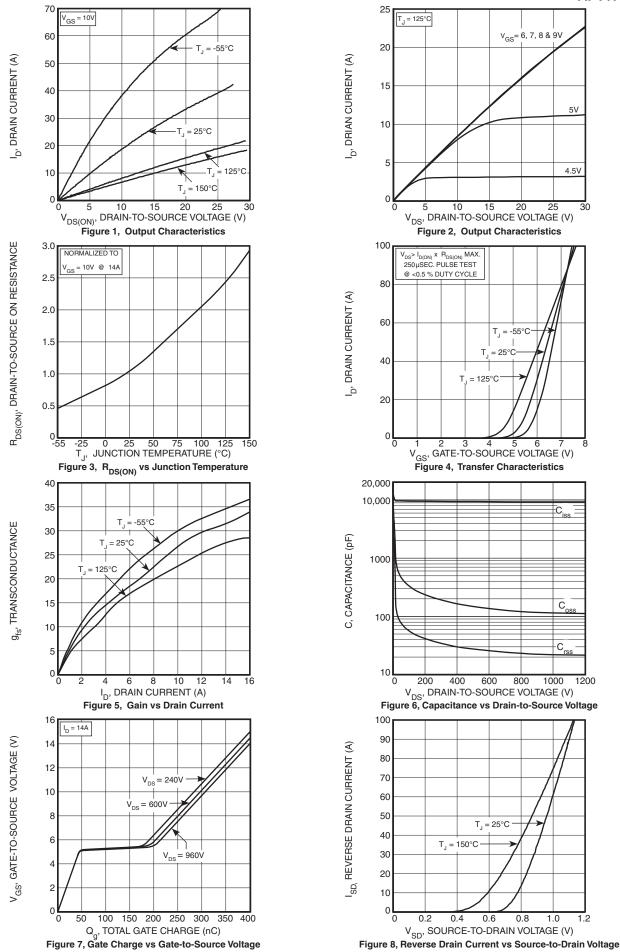
Α	P.	T1	7	F1	2	0,	
---	----	----	---	----	---	----	--

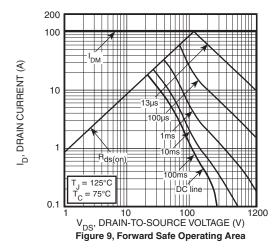
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		1200			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			1.41		V/°C
R _{DS(on)}	Drain-Source On Resistance®	V _{GS} = 10V, I _D = 14A			0.55	0.58	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 2.5 \text{mA}$		2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zero Ceta Voltage Prain Current V _{DS} = 1200V T _J = 25°C		T _J = 25°C			250	μA
DSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	T _J = 125°C			1000] μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

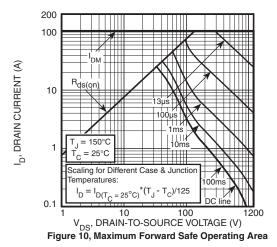
Dvnamic Characteristics

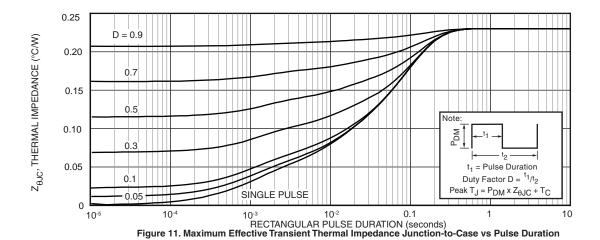
T_{.1} = 25°C unless otherwise specified

Dynamic C	ynamic characteristics 1j = 25 c unless otherwise specified						
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
g _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 14A		31		S	
C _{iss}	Input Capacitance	V OV V OFV		9670			
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		115			
C _{oss}	Output Capacitance	1 - 111112		715			
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	V - 0V V - 0V to 900V		275		pF	
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 800V$		140			
Q_g	Total Gate Charge	V 04-40V L 44A		300			
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 14A,$ $V_{DS} = 600V$		50		nC	
Q_{gd}	Gate-Drain Charge	V _{DS} = 600V		140			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		50			
t _r	Current Rise Time	$V_{DD} = 800V, I_{D} = 14A$		31		no	
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		170		ns	
t _f	Current Fall Time			48			

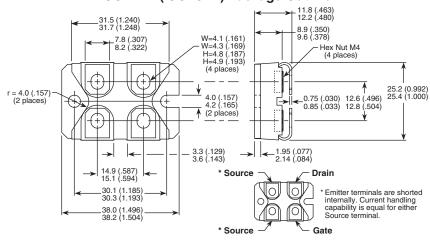

Source-Drain Diode Characteristics


Symbol	Parameter	Test Condition	s Min	Тур	Max	Unit
Is	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n	OD D		18	A
I _{SM}	Pulsed Source Current (Body Diode) ^①	junction diode (body diode)	SULTAN		104	^
V _{SD}	Diode Forward Voltage	$I_{SD} = 14A, T_{J} = 25^{\circ}C, V_{G}$	iS = 0V		1.1	V
t _{rr}	Reverse Recovery Time	T _J =	25°C		330	ns
rr		T _J =	125°C		660	115
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 14A^{\textcircled{3}}$ $T_{J} =$	25°C	1.72		μC
rr		$di_{SD}/dt = 100A/\mu s$ $T_J = 125^{\circ}C$	125°C	4.67		μΟ
1		T _J =	25°C	11		Α
'rrm	Reverse Recovery Current	T _J =	125°C	16		A
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 14A$, di/dt $\le 1000A/\mu s$, V_{DD} $T_{J} = 125^{\circ}C$) = 100V,		25	V/ns


- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 22.1mH, $R_G = 25\Omega$, $I_{AS} = 14$ A.
- \bigcirc Pulse test: Pulse Width < 380 μ s, duty cycle < 2%.


- 6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.



SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)